Dynamics of immature mAb glycoform secretion during CHO cell culture: An integrated modelling framework.

نویسندگان

  • Ioscani Jimenez Del Val
  • Yuzhou Fan
  • Dietmar Weilguny
چکیده

Ensuring consistent glycosylation-associated quality of therapeutic monoclonal antibodies (mAbs) has become a priority in pharmaceutical bioprocessing given that the distribution and composition of the carbohydrates (glycans) bound to these molecules determines their therapeutic efficacy and immunogenicity. However, the interaction between bioprocess conditions, cellular metabolism and the intracellular process of glycosylation remains to be fully understood. To gain further insight into these interactions, we present a novel integrated modelling platform that links dynamic variations in mAb glycosylation with cellular secretory capacity. Two alternative mechanistic representations of how mAb specific productivity (qp ) influences glycosylation are compared. In the first, mAb glycosylation is modulated by the linear velocity with which secretory cargo traverses the Golgi apparatus. In the second, glycosylation is influenced by variations in Golgi volume. Within our modelling framework, both mechanisms accurately reproduce experimentally-observed dynamic changes in mAb glycosylation. In addition, an optimisation-based strategy has been developed to estimate the concentration of glycosylation enzymes required to minimise mAb glycoform variability. Our results suggest that the availability of glycosylation machinery relative to cellular secretory capacity may play a crucial role in mAb glycosylation. In the future, the modelling framework presented here may aid in selecting and engineering cell lines that ensure consistent mAb glycosylatio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomic Analysis of Host Cell Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells

Chinese hamster ovary (CHO) cells are the most common cell line used for the production of therapeutic proteins including monoclonal antibodies (mAbs). Host cell proteins (HCPs), secreted and released from lysed cells, accumulate extracellularly during the cultures of recombinant CHO (rCHO) cells, potentially impairing product quality. In an effort to maintain good mAb quality during the cultur...

متن کامل

The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody

Microcarriers are widely used for the large-scale culture of attachment-dependent cells with increased cell densities and, ultimately, higher product yield. In these processes, the specific culture conditions can affect the quality of the product, which is closely related to its glycosylation pattern. Furthermore, the lack of studies in the area reinforces the need to better understand the effe...

متن کامل

Determination of Minimum Inhibitory Concentration (MIC) of Hygromycin B in CHO cells

Chinese hamster ovary (CHO) cells are considered as the most commonly used host for industrial manufacturing of therapeutic proteins. The aim of this study was to evaluate the minimum inhibitory concentration (MIC) of hygromycin B in both CHO-DG44 and CHO-S cells since hygromycin B resistance cassette can be used for future selection of gene expression in CHO cells. The minimum inhibitory conce...

متن کامل

Direct analysis of mAb aggregates in mammalian cell culture supernatant

BACKGROUND Protein aggregation during monoclonal antibody (mAb) production can occur in upstream and downstream processing (DSP). Current methods to determine aggregate formation during cell culture include size exclusion chromatography (SEC) with a previous affinity chromatography step in order to remove disturbing cell culture components. The pre-purification step itself can already influence...

متن کامل

Towards Controlling the Glycoform: A Model Framework Linking Extracellular Metabolites to Antibody Glycosylation

Glycoproteins represent the largest group of the growing number of biologically-derived medicines. The associated glycan structures and their distribution are known to have a large impact on pharmacokinetics. A modelling framework was developed to provide a link from the extracellular environment and its effect on intracellular metabolites to the distribution of glycans on the constant region o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology journal

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 2016